Angular velocity:
ω=Sθ˙ If C=Rx(θ3)Ry(θ2)Rz(θ1),
ω=Sθ˙=⎣⎡θ˙300⎦⎤+Rx(θ3)⎣⎡0θ˙20⎦⎤+Rx(θ3)Ry(θ2)⎣⎡00θ˙1⎦⎤ DCM from parameters:
CBA=cosϕ+(1−cosϕ)aa⊺−sin(ϕ)a× Parameters from DCM:
cosϕ=21(C11+C22+C33−1)=21(σ−1) a=⎩⎨⎧2sinϕ1⎣⎡C23−C32C31−C13C12−C21⎦⎤⎣⎡±21+C11±21+C22±21+C33⎦⎤indeterminateσ=−1,3σ=−1σ=3 Angular velocity:
a˙=21[a×−cot(2ϕ)a×a×]ω ϕ˙=a⊺ω DCM from parameters:
CBA=(η2−ϵ⊺ϵ)+2ϵϵ⊺−2ηϵ× Parameters from axis-angle:
ηϵ=cos2ϕ=asin2ϕ Parameters from DCM:
ηϵ=±211+C11+C22+C33=4η1⎣⎡C23−C32C31−C13C12−C22⎦⎤ Angular velocity:
ϵ˙η˙=21(ϵ×+η)ω=−21ϵ⊺ω Euler's equation is defined as:
M=Jω˙+ω×Jω Assuming principal axis rotations, the equation can be expanded to:
MxMyMz=Jxω˙x−(Jy−Jz)ωyωz=Jyω˙y−(Jz−Jx)ωxωz=Jzω˙z−(Jx−Jy)ωxωy Linearized form plant model:
G(s)=Js21 Rate of change for 321 Euler angle rotation:
⎣⎡ϕ˙θ˙ψ˙⎦⎤=⎣⎡100sin(ϕ)tan(θ)cos(ϕ)sin(ϕ)sec(θ)cos(ϕ)tan(θ)−sin(ϕ)cos(ϕ)sec(θ)⎦⎤⎣⎡ωxωyωz⎦⎤=⎣⎡ωx+ωztan(θ)cos(ϕ)+ωytan(θ)sin(ϕ)ωycos(ϕ)−ωzsin(ϕ)ωzsec(θ)cos(ϕ)+ωysec(θ)sin(ϕ)⎦⎤ State vector:
u=⎣⎡ϕθψωxωyωz⎦⎤u˙=⎣⎡ϕ˙θ˙ψ˙ω˙xω˙yω˙z⎦⎤=⎣⎡ωx+ωztan(θ)cos(ϕ)+ωytan(θ)sin(ϕ)ωycos(ϕ)−ωzsin(ϕ)ωzsec(θ)cos(ϕ)+ωysec(θ)sin(ϕ)[Mx+(Jy−Jz)ωyωz]/Jx[My+(Jz−Jx)ωxωz]/Jy[Mz+(Jx−Jy)ωxωy]/Jz⎦⎤ u=[qω]=⎣⎡q0q1q2q3ωxωyωz⎦⎤ u˙=⎣⎡21(−q1ωx−q2ωy−q3ωz)21(q0ωx+q2ωz−q3ωy)21(q0ωy−q1ωz+q3ωx)21(q0ωz+q1ωy−q2ωx)[Mx+(Jy−Jz)ωyωz]/Jx[My+(Jz−Jx)ωxωz]/Jy[Mz+(Jx−Jy)ωxωy]/Jz⎦⎤ Frequency domain definition:
McHC=(Kp+sKd)Δθ~=Kp+sKd Time-domain definition:
Mc=KpΔθ+KdΔθ˙=Kp(θref−θ)+Kd(θ˙ref−θ˙) Defining gains in terms of natural frequency and damping ratio:
Kp=Jωn2 Kd=2Jωnζ Control law:
u=−Kqerr,v−Cωerr Known formulations:
K=KI,C=diag(C1,C2,C3),K,Ci>0 K=qerr,s3KI,C=diag(C1,C2,C3) K=Ksign(qerr,s)I,C=diag(C1,C2,C3) K=[αJ+βI]−1,K−1C≤0,α,β≤0 Eigen-axis rotations:
u=−Kqerr,v−Cωerr+ω×Jω